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The Motion of a Tagged Particle and 
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We analyze the asymptotic behavior of a tagged particle inside an infinite 
system of identical elastic point masses. The main objective is to study "very 
nonhomogeneous m e d i a "  particles which are more and more dispersed far 
from the origin. We suggest that the limit motion of a tagged particle may serve 
to classify media in the nonhomogeneous case as well as in the homogeneous 
case.  

KEY WORDS: Tagged particle motion; scaling limit; nonhomogeneous 
media. 

INTRODUCTION 

The motion of a tagged particle in a chaotic bath forms a central problem 
in statistical physics. A rigorous mathematical study of the problem can 
illuminate some points of the classical dynamics of gases or liquids. 

It had been widely accepted that the system after a while loses its 
memory, but the theoretical or numerical study of the motion of a tagged 
particle shows that its velocity correlation follows a pattern similar to that 
of problems of nonequilibrium statistical mechanics, (~) i.e., slow decay, and 
so the approximation of the system by one without memory is rather crude. 

There have been extensive studies of the motion of a tagged particle. 
See Di.irr etaL, ~3'4) Sz/tsz and T6th, ~13'14~ and Sinai and Soloveichik ~n) 
for models, theorems, and discussions of open problems with regard to 
equilibrium Gibbs states. 

Recently, there has been increasing interest in media out of equi- 
librium, e.g., in media distorted under shear. The rigorous mathematical 
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study of the motion o f  a tagged particle due to particle interaction might 
show how far from equilibrium the medium is. From that point of view it 
seems natural to classify media by saying that two of them are equivalent 
if in both cases the stochastic process that represents the limit motion of a 
particle under scaling is the same. 

At the moment it seems premature to evaluate the quality of such a 
classification; one needs more thorough mathematical results, and a 
relation of these results to physical phenomena, but it is noteworthy that 
this kind of classification is at least based on an idea similar to that of some 
experimental techniques. 

In this paper, we will only deal with positions of particles in a gas of 
identical elastic masses. We set the additional tagged particle with the same 
mass at a specific site in the medium. 

In the one-dimensional case under study we will analyze relatively 
simple situations, but even there, some unexpected phenomena appear. We 
discuss this in Section 3. 

To analyze the limit behavior, we introduce a renormalization. We call 
the standard renormalization the x/~ renormalization. The name standard 
renormalization is derived from the homogeneous case, where under x/~ 
renormalization, there exists the scaled limit motion of a colliding tagged 
particle for a variety of models. (8~ Recall also the theorem by Donsker for 
random walks. If the particles are more and more dispersed, then the 
standard ~ renormalization is not sufficient, in the sense that under this 
scaling the particle will still "escape to infinity" as in the case of free 
motion. 

We will study mostly the class [0]" of media (see Definition 1 in 
Section 1), where the standard scaling is not sufficient in the above sense. 

We consider a collection of particles (identical point masses) with 
positions xk, k �9 Z (k �9 N if we assume initially only positive positions). We 
suppose that xk ~< xk +1. This ordering is always possible if, with probabil- 
ity one, {Xk} has no point of accumulation. Now we endow each particle 
xk with a random constant velocity vk. We suppose that {xk} and {vk} are 
independent systems of random variables, and that the v~ are identically 
distributed independent random variables. 

We define xk( t )=xk+vkt ,  and assume that, if iC j ,  then 
{t: x i( t )=xj( t )}  does not contain a nondegenerate interval. This require- 
ment is fulfilled if, for example, the Vk are of continuous type, or if Xk ~ Xj 
for k C j. The particle Xo = 0 is considered the tagged one and we assume 
that, at time zero, there is no other particle at the origin. 

If we only consider the particles in R+, then we add particles in R - ,  
symmetrically distributed with respect to the origin and such that {Xk}~=~ 

X --1 and { k}k= - ~  are independent systems. 
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Now we define the trajectory of the tagged particle under elastic 
collisions by the deterministic Harris theorem, (6'12) 

yo(t) = lim med(x_.(t), x _ , , + j ( t )  ..... Xo(t ) ..... xn(t)) 
n ---~ o o  

In our case, in order to satisfy the conditions of this theorem, it is only 
required that 

lira Xk ~- + 0 0 ,  lira Xk ~- Vkt  = -}-00 
k ~  + c o  k ~  + o o  

lira x k = - o %  lim Xk+Vkt=--O0 
k ~  - - o o  k ~  - - c o  

almost everywhere. 
If, for example, xlk I = Ikl 1/2, k eZ ,  then we have to ask for the 

existence of E[v~]. 
We always assume that Elvkl =1,  P ( v k = 0 ) = 0 ,  and that vk has a 

symmetric distribution. The last assumption is made to avoid some 
technical difficulties. The second one clearly is needed to avoid barriers. 

We look for the limit behavior o'f (h(A)) - lyo(At) ,  where 
h(A): R + --* R +, and make use of the fundamental lemma by Harris, (61 

{y0(At) < --- {ZA > 0} 

where 

ZA = Z A ( a , t ) = ) ( [ X o + V o A t < c ~ ] +  ~ X[Xk + VkAt < c~] 
k = l  

- - 1  

- ~ Z[Xk+VkAt>~C~] 
k =  - - o o  

Here and throughout the paper Z [  ] is the indicator function of [-] .  
In this lemma we can include a renormalization factor h(A)>0,  and 

consider yo( At ) < ah( A ). It is always required that h( A ) = o( A ). 
Using the lemma, we will deal with sums of random variables, and the 

limit behavior of these sums will serve for the classification of media. 

1. S T A T E M E N T  O F  R E S U L T S  

If the medium is formed by only one (the tagged) particle x o = 0, then 

yo(t) = Xo(t) = rot 
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Therefore 

t ~ l yo ( t ) l - - ,+oe  a.e. f o r any  ~ < 1  

By the symmetry of v~, and using, for example, the standard scaling, we get 

P(t 1/2yo(t ) < e) ~ 1/2 

We will see later that the same will be true for particles of the medium 
which are more and more dispersed far from the origin. So we start with 
the following: 

D e f i n i t i o n  1. We say that {xk} �9 [0] S if and only if 

V P( t -1 /2yo( t )<~)- - -~ l /2  if t ~ o o  
2 E R  

("s" means the standard renormalization). 
The t 1/2 scaling might be substituted by any function h: N + ~  ~+, 

h(t) = o(t) and we introduce the class [0] h. 

D e f i n i t i o n  2. We say that { x k } � 9  h , w h e r e h : R  + ~ R  + , i f  

V P[ (h ( t ) )  1 [yo(t) ] < c ~ ] ~ 1 / 2  if t ~ o o  
~ R  

It is clear that if 

{xk}e [0 ]  h' and h 2 < h l ,  then {xk}e[0 ]  h2 

In the symmetric case, this condition is equivalent to 

V P[(h(t))- '  lYo(t)l <~3 -~0 
m E R  

D 
By the term symmetric case, we mean that xk = - x _ k ,  k � 9  and {xk}~ 
and {xk} E~ are independent systems of random variables. In this paper 
we will deal with symmetric or close to symmetric positions. In view of 
Harris' lemma (cf. Introduction), the first condition is easier to analyze. 

T h e o r e m  1. In the symmetric case, if {xk}�9 [0] h and {2k} �9 [0] h, 
where {xk} and {2k} are independent systems of independent random 
variables, then 

[o3 

(because the tagged particle is set after the union, it is counted only once). 
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In the following theorem we will investigate the class [0]  S in the case 
of deterministic (symmetric) positions. 

T h e o r e m  2. Let x k = F(k)> O, k >~ O, and x k = -F(k).  The func- 
tion F(x) is increasing, and moreover has an increasing first derivative 
F'(x). [-Originally we define only F(k), and F(x) is an extension of F(k). 
Clearly we can make F e  Ca.] Assume also that vk is separated from zero, 
or has bounded density. 

Then 
[o] 

We shall discuss these very strong conditions imposed on the function F, 
which defines positions xk, later. On the other hand, since we are looking 
for the classification of positions of particles, any condition on v k is of 
minor importance. 

In this theorem we have analyzed the case of deterministic positions. 
We will now introduce the concept of asymptotic bounds for a 

random medium, which will give us a tool to deal with more interesting 
(random positions) situations. 

Let {x(k~ i = i, 2, 3, be three random media such that 
+co 

~,, P(X(k2) > X (3)) < 00, E P(X(k 2)< X(1)) < O0 
k = - - o z  k =  oe 

and for any integer k, x(kl)< x(~ 3). 
Consider the given scaling h(A): R § --* R +. By Harris' lemma from the 

Introduction we will study the limit behavior of Z~)=  Z~)(eh(A), t) for 
media {x#)}, i =  1, 2, 3. We have 

5-0(3 

Z!~)(~h(A), t) = X[VoAt < eh(A)] + ~ X[x(k ~ + vkAt < eh(A)] 
k = l  

--1 

- ~ X[Xj[)+vkAt>~eh(A)] 
k =  oo 

Suppose that for i =  1, 3, Z~ ) needs the same h* to become in the limit a 
random variable with no atom at zero. (We stress the difference between h 
and h*; h is fixed scaling factor, and h* a suitable factor of secondary 
importance to the study of Z.) 

More precisely, for i = 1, 3, and each n > 0, 

(Z~)(c~kh(A)'tk) ) 
h*(A) , k= 1, 2 ..... n 

[ W(c~, tk), k =  1 ..... n] 
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W(ek, tk) (multidimensional r.v.) has no atom at zero for any choice of 
(~ ,  t,). 

We ask for the convergence of joint distributions but we do not ask 
for any consistency conditions for joint distribution laws of W(c~k, tk), 
k = 1,..., n, the same for i = 1, 3. 

In the case described above we say that media {x(k 1)} and {x(k 3)} form 
asymptotic bounds for a medium {x(k2)}. 

T h e o r e m  3. If {x(k ~)} and {x(k 31} form asymptotic bounds for 
{x(k2)}, then lima ~ oo (h(A)) -1Y(o~ does not depend on i =  1, 2, 3 (in the 
sense of convergence of finite-dimensional distributions). 

Coro l la ry .  

In this case 

and by Harris' lemma 

If W(a, 1) is Gaussian with mean zero for any ~, then 

{x~ 2)} e [0] h 

P[zU)(eh(A), 1)>  02 ~ 1/2 

P(h(t) ~ (y~oi)(t)) < ~) ~ 1/2 

With the help of Theorem 3, we can prove that more media that were 
obtained from Theorem 1 belong to a class [0]  h. 

Now we will give an application of Theorem 3 for the case when the 
differences x k - x k _  1 are independent random variables. 

If ~k = xk - xk_ 1, k E Z, are independent identically distributed ran- 
dom variables, then {xk} is a renewal process and has been analyzed by 
Major and Sz~tsz. (8) We will discuss this model in Section 3. In view of our 
goal, it is natural to study the case of the ~k independent, with increasing 
mean. Here we seek the common form of distribution, but with different 
parameters. We examine only the example of the exponential distribution 
for ~k- We define ~k for k > 0, and we assume symmetry, i.e., 

D 
~_, = - ~ ,  k e N  

(We assume independence of {xk} - 1  with respect to {Xk}~.) Then we 
have the following result. 

T h e o r e m  4. LetE(r Now, E(~k )=k~- (k -1 )Lk>O,c~>l ,  
and ~k (k e N) have the exponential distribution. Then 

{x~} e [Oy 
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In the study of, for example, more and more dispersed particles far from 
the origin, in the proper sense {xk} e [0]  s, x / t  renormalization was "not 
enough." It is natural to ask if there exists a scaling such that the limit 
motion of the tagged particle becames a stochastic process (not infinity) 
with no atom at zero, and call this scaling "natural renormalization." 

The natural renormalization does not always exist. 
We will see in Theorem 4 that if xk = k ~ and e ~ 0% then the natural 

renormalizing factor will be t ~ with 19 ~ 1. 
So, for positions, e.g., xk = e ~, the natural renormalizing factor should 

be at least t. But, on the other hand, it must be o(t). 
We can also look for natural renormalization for media which are 

denser far from the origin, as in the following example: 

xk=x//k,  F ( x ) = x / x ,  f ( x ) = F - l ( x ) = x  2, where k ,x>O 

and we assume symmetry. Then, without any renormalizing factor, we 
obtain the positive limit for the variance of yo(At). If, for example, vk = + 1, 
then 

We have 

P(yo(A)< 1 ) :  P(ZA(1, 1)>O):  p ( Z A ~  -' 1 ) > 0 )  

1 ( A + l ) 2 - ( A - 1 ) 2  
A-IE(ZA(1, 1 ) ) ~  A 

1 (A + 1)2+ ( A -  1)~ 
A - z  Var(ZA(1, 1 ) ) ~  A2 

~2 

1 
- ) . - -  

2 

and we apply the standard central limit theorem. 
We will frequently use f ( t ) = F  l(t). The function f ( t )  plays a very 

special role in the proofs. This should be clear if we note that f ( t )  
represents approximately the number of particles {x~} in the interval [0, t] 
at time zero, and using Harris' lemma from the Introduction, this number 
of particles is crucial. 

In the general case of deterministic positions, x~ = F(k), f ( t )  = F 1(0, 
where F is an increasing function; then if we set h(t)= [f(t)]/f ' ( t)  1/2, we 
can expect under easy but informal calculations that for each ~ > 0 and 
t > O  

f (A)  1/2 E(ZA(c~h(A), t)) ~ Cl(g , t) > O 

f (A)  ~ Var(ZA(c~h(A), t)-~ c2(~, t ) > 0  



1288 Szatzschneider 

and h(t) could be a natural renormalization. If F(t)=e', h( t )=  t(ln/)1/2, 
which is inadmissible. 

The case xk = k 1/~ will be treated in Theorem 5, leaving more complex 
problems for another study. 

T h e o r e m  5. Let f ( x ) =  F-I(X) ~ - X " ,  ~ > O. If IVk[ = 1, then the limit 
process of yo(At)/A 1 ,/2 is the Gaussian process with mean zero and 
covariance 

1 1 
E(y(s ) . y (u ) ) -2q2s ,_ lu ,_  1 [min(s, u)]", s,u>O 

As before, "limit" refers to the convergence of the finite-dimensional dis- 
tributions. It is not difficult to prove tightness for t /< 2. If r/>~2, then 
yo(At)/A 1-~/2 is not tight. (The limit process does not have continuous 
paths.) The assumption [vkl = 1 is only a simplifying one, and we might 
easily extend the result to arbitrary velocities (with different limiting 
covariances). In this case the proof of tightness, if this is present, seems to 
be difficult, mostly because we do not have any stationarity properties of 
the process yo(At). This process does not seem to be close to some Markov 
one either. 

2. P R O O F S  OF T H E  T H E O R E M S  

Proof of Theorem I. Suppose ~ > 0. We will use the following parti- 
tion of Zt(eh(t ), 1) (instead of A we put t) for xk independent random 
variables, {x~} ~ [0] h, Z,(~h(t), 1)=  ~t + e~, where r is the symmetric part, 

3, = Z[Xk+Vkt<~--o~h(t)]-- ~, ;g[Xk+Vkt>~o~h(t)] 
k = l  k =  --co 

By symmetry, P(~, > O) ~ 1/2 if P(~, = 0) --* 0. 
But this is fulfilled in the case of an infinite number of particles on the 

right of the origin (then on the left as well). In this case 

P ( - e ,  < ~ < a,) --, 0 

and for any A ~ 

P ( A - ~ t < ~ t < A  +et )~O 

and moreover uniformly with respect to A. Therefore the proof of the 
theorem is reduced to standard probabilistic calculus. 
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If both media are finite, there is almost nothing to do and, if exactly 
one, say {xk}, is infinite, then, for. this medium P(Z,(eh(t),  1)=  k)--+ 0, and 
the theorem results in a straightforward way. 

Proof of  Theorem 2. For simplicity, we will give the proof in the 
case of bounded density g(v) for vk. We will show that 

P(Z,(c~ x/~, 1) > 0) --* 1/2 

Without loss of generality we may set ~=  1. Let Z ( t ) = Z , ( x / 7  , 1) and 
f ( t )  = F- t ( t ) .  

The suitable factor is h*( t )=( f ( t ) )  -1/2, so that we consider 
P ( Z ( t ) > O ) = P ( f ( t ) - i / 2 Z ( t ) > O ) .  Since Z, is a sum of independent 
random variables, by the central limit theorem, it suffices to show that 

f ( t)- l /2E(Z(t))--+O, l i m i n f f ( t ) - l V a r ( Z ( t ) ) > O  if t -+co  

Since f ( t )  --+ oo, 

( f( t))  1t2 E(Z(t))  

(f(t)) F(xk+ vt < , /7)- -  P(xk+vt>,/7) 
k 1 k = l  

= (f( t))  112 P [ f + ( v t + x / t ) > k ] -  P [ f + ( v t - , , / 7 ) > k ]  
1 k = l  

Here f + (x) = f ( x )  if x > 0, and is zero if x ~< 0. Hence, 

( f ( t ) ) -  ,i2 E (Z ( t ) )  ~ E l f  + (vt + .~/~) - f + (vt - ~/7)] ( f ( t ) ) -  1/2 

As a matter of fact, in the first term we may suppose that v > 0 because if 
we set A( t ) =  {v: v < 0 ,  v t + x / ~ - > 0  }, then 

(,) [ f ( t ) ] l l  2 g ( v ) d v < ~ c ~  [ f ( t )] l l  2 

In the same way we may suppose that v t -  , / 7  > , ~ ,  for these v: 

f ( t v  + x/7) - f ( t v  - ~ )  < 2[ f ( tv  + 2 ~ )  - f ( tv)  ] 

Now 

( f ( t ) )  -'12 [ f ( t v  + 2 ~uiT)-- f ( t v ) ]  ~ c f ' ( tv )  . ~ ( f ( t ) )  - ' i2  
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Now it is an easy task to prove that 

1/,~ [ f ( t ) ]  1/2 g(v) dr--. o 

On the other hand, 

(f(t))_~ E{Z2(t)} >>- f ;  f(tv)_~ gtv)" " dv 

This ends the proof of Theorem 2. 

Proof of Theorem 3. 
integers k, for which 

I f  f(tv) , , >~ - ~  gtvt dv 

>>.P(v>~ 1 ) > 0  

For simplicity set n = 1. Consider the set S of 

Now we construct 2~ ), 
2~)(~h(A), t)=ZEvoAt <~h(A) ] + 

k>O, k e ~  

ZEX~ ) + vkAt < c~h(A)] 

- ~ ZEX~i)+VkAt>~c~h(A)] 
k<O, k e S  

Construct also y(o~ (particles x~ ~ with kr S disappear). By the assump- 
tions of the theorem we have for i = 1, 2, 3 

Z~I(~h(A), t) - 2~)(~h(A), t) 
* 0 a.e. h*(A) 

Recall that h*(A)-~ 0% and # {k: k(i~o} is finite with probability one 
Now, for i =  1, 3, 

A~oolim P(  ntA) ) <c~ = lira P(Z~)(~h(A),t)>O) 
A ~ o o  

( Z~)(~ O) =)ira P \  h*(A) t ) >  

t) > O) 
h*(At 

(y(~ ) 
= l i r a  P \  h - ~  <~ 
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The third equality holds, because W(e, t) has no atom at zero. By assump- 
tion, every limit probability in the sequel does not depend on i =  1, 3. 

But 2 ~ > ~  2 ~  1 ~> ;~1) and moreover y(ol) <~ 3~2) <~ j~ (03), Therefore 

\ ( )  

does not depend on i = 1, 2, 3 and going back we see that the same is true 
without the tilde. 

Proof of Theorem 4. Note that E(x~)=k ~, Var(xk)=ck2~-t+ 
o(k2~ x). Let ~ be a "small positive number." We have 

P(xz:<( k - k 1  1/'(2c0-e)~)= P ( ¢lnt- ""~g,--1-7"Y+¢k--k~ 

(k - k ~-  ~/12~ ~)~ _ k~,~ 

" (  k ~ - 1/2 ) 
Now, 

k ~ - ( k -  k I - 1/~2~) ~)~ ~ k ~ 
k ~ - 1/2 

where fl = l / 2 -  1/(2c 0 - e* > O, and e* is another small positive number. 
If we deal with a normal random variable 17, then 

P ( r / > k  ~) converges, where f l>O 
k=l 

so we will estimate the difference between the standard normal distribution 
and the standardized sum Sk = ~1 + ""  + ~ -  

Using a classical estimation for moments of Sk = xk, we can easily see 
that E{l[x~-E(xk)]/ak] p} is uniformly bounded in k for any fixed p. 
Here ak=(Varxk) ~/2 (cf. Petrov, (9) p. 60). Therefore, setting G(x), the 
distribution function of [x  k -  E(Xk)]/ag, and using a standard calculation, 
we get 

Cp IGk(x)-q~(x)l<l+xP for any p 

(see Petrov, (9) Theorem 4.9). 
Choosing p big enough, we obtain ( t / 2 -  1/2~)p > 1, whence, for any 

> 1, the series 

~ P [ ~ l +  ' "  +~n~(k+kl-1/(2co-e*) ~'] 
k = l  

converges. 
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For ~ > 1 we can now apply Theorem 3 for x~ 2) = xk, 

x ~X) =f - ( I k h+L k l ' - l / ~ ) - ~* )  if k < 0  
( ( k - k  1-1/(2~)-~ ) if k > 0  

and 

x~3)=[-( Ik l - lk l  ~ ~/~2~')-~*) if k < O  
~ ( k + k  1-l/(2c0 ~ ) if k > 0  

The proof that {x~ ) } e [0]  s, i = 1, 3, is similar to that of Theorem 2 and we 
can apply the corollary to Theorem 3. 

Proof of  Theorem 5. First note that 

and 

lim A -~/2E(Z a(~*, s) ) = tl~S ~- 1 
A ~ c o  

lim A - "  Var(Za(~*, s)) = �89 ~ 
A ~ o o  

Here ~* = ~A 1 r//2 and the suitable factor is A ~/2. 

Set Z*(~ ,  s) = A-"/2Za(~*, s). Now 

P(Z~(~*, s) > o, zA(3*, u) > o) 

= P (Z*(o~, s)--tl~s ~-1 
\ -,7~ --q <" ~' 

z , g ( f l ,  u )  - ,Tf lu"-  ' 
~U q -- 1 

Now it is an easy task to show that 

lim cov(Z*(c~, s), Z*(f l ,  u ) )=  �89 u)]" 
A ~ o o  

and hence Theorem 5 is proved. 

3. D I S C U S S I O N  

In this first attempt to solve the "inverse problem" starting from 
the scaling limit of the motion of tagged particle and ending with the 
probability law of the chaotic bath, we will present some discussion of our 
results and state some open problems. 

P r o b l e m  1. Generalize Theorem 1 without the symmetry assump- 
tion or without the assumption of independence of {xl}, {2l}. Clearly, for 
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xk, k E N ,  not necessarily independent, we can put x _ k =  - x k ,  and if for 
almost all co, {x,(c~)} e [0]  h and {~,(co)} e [0]  h, n e Z, then, for these co, 

{x.(~)} ~ {&(~o)} ~ [0] h 

Therefore {xk} vo {#k} ~ [0] h. 
Obviously the hypotheses of Theorem 2 seem to be very restrictive. 

One might think that if {xk} ~ [0] s and [xk[ > [xkJ, x _ k = - x k ,  #_k = 
- x k ,  then {xk} E [0]  s. 

We can easily give a family of counterexamples for the case vk = _+1. 
These counterexamples are constructed on the following basis. If particles 
are highly dispersed in mean but with "condensation points," then this 
groups of particles will force, from time to time, the tagged one to return 
close to the origin. This case might be illustrated as shown in Fig. 1. In this 
picture, (~(t)=(F-l( t ) )  m is defined to be a piecewise linear increasing 
function whose graph lies below that of ?/4 and has two alternating types 
of slope. The larger one is constant, and the segments with this slope are 
of constant length. The other slope (a decreasing step function) is adjusted 
to the slope of t I/4. 

Recall from Section 2 tha t f ( t )  = ~o=(t) is approximately the number of 
particles in [0, t]. Consequently, we will have an increasing number of 
particles in groups of high density. 

Formally, 

~b(t + v / t )  - ~b(t) r 0 

Then 

( f ( t ) ) -  1/2 E [ f ( t  I vl + ~ - i ) - f ( t  Ivl )l > ~(t + ~ )  - ~(t) ~ 0 

ho(t)=[f(t)l m 

t~/4 

t 
Fig. 1 
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but, on the other hand, 

f ( t )  -1 [ f ( t  + x/~) + f ( t ) ]  --* 2 

Therefore (f(t)) -1 Var Z(t) is bounded. 
Now one easily obtains {xk} r [0]  s. 

Note. We could try to analyze the problem of Theorem 2 using the 
theory of regularly varying functions. (1~ Suppose that f ( t ) = F - ~ ( t ) =  
tPL(t), where L(t) is a slowly varying function, p < 1. Now, considering the 
"weaker version" of what is needed, 

;oo ( tv + x/~ ) p L( tv + x/~ ) - ( tv ); C( tv ) 
P(dv) 

Jo tp/2[ L( t) ] 1/2 

f ?  [(tv + x/~) ~ - (tv)Pl L(tv) 
= tp--~-(t)- ~ g(v) dv 

;~ [L(tv + x/~) -- L(tv)](tv + x/~) ~ + tp/2[ L( t ) ] 1/2 g( v ) dv Jo 
The first integral tends to zero if t--* ~ under a suitable assumption 
(cf. Seneta, (1~ Theorems 2.6, 2.7), but, dealing with the second, one has to 
prove that 

L(t + x / /~)-  L(t) 
~0 t - p12 

This would lead to a special kind of very slowly varying function. (2) 
Inside the class [h] N of random media with h being the natural renor- 

malization for them, we may introduce the equivalence relation between 
two media {xk} and {Yk}. Let us say that {xk} ~h {Yk} if the stochastic 
processes that represent the scaled limit of the motion of the tagged particle 
are equivalent, i.e., have the same finite-dimensional distributions. 

Now the following problem occurs: 

P r o b l e m  2. If {Xk}~ [h] N and {y~} ~ [0]  h, then, is it true that 

~ h  
Major and Szgsz (8) have considered homogeneous media with w/~ 

scaling. 
In the case of renewal positions, i.e., ~k = xk - xk_ 1 being i.i.d.r.v, with 

mean # and variance a2, they obtained that yo(At) /x/~ converges weakly 
to the non-Markovian Gaussian process with covariance function 

/ l - l E  Ivl min(t, s ) +  # - 3 ( a 2 -  #2) �89 min(t lul, s [vl) 



Motion of a Tagged Part ic le 1295 

with s, t > 0, and u, v are i.i.d.r.v, with the same symmetric distribution law 
as the velocities vx. 

Comparing this result with that of Szatzschneider ~15~ for independent 
positions xk = r + k, where the covariance function is 

E ]vl min(t, s ) -  �89 min(t lul, s Ivr) 

one gets that: 

1. An "independent" medium after an ordering will never be a 
"renewal" one. This is only possible in the deterministic case. Moreover, 
"independent medium" is not equivalent to any "renewal medium." 

2. Two renewal media are equivalent if and only if fil = if2 and 
al = a2. We can repeat here the proof of the non-Markovian character. ~5~ 

3. It is possible to "mix independently" (i.e., consider {ffk) w {kk) = 
{xk}) a renewal process with an independent process and obtain Brownian 
motion in the limit. This is always possible if for the renewal process, 
~r2 >#2, choosing for the independent process/2 = E(xk--xk_ 1) such that 

~ - 3 ( ~ 2 _ ~ 2 )  = (~)-~ 

In this case the mixture is equivalent to a Poisson process. 

Problem 3. Is it possible, using new techniques, to prove that for 
an infinitely divisible renewal process the limit process is Brownian 
motion? It suffices to show that it is a Markovian process. This would lead 
to the result that for these processes (E(xk--xk_~))2= Var(xk--xk 1), a 
result related to the solution of an open problem: ls any infinitely divisible 
renewal process the Poisson process? (5) 

We have proposed a new classification of media. We can mention the 
possibility of perhaps a "better classification" in the homogeneous case. It 
is easy to see that, if we start the moment of observation at fixed time A, 
then the limit results do not change. On the other hand, if A ~  
sufficiently fast, then the limit will be Brownian motion in many cases. (7) 
The rate o convergence of A which leads to Brownian motion would serve 
to classify media. This problem seems to be a difficult one. 
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